色综合天天综合网国产,97夜夜澡人人双人人人喊,老司机午夜精品视频无码,99re热这里只有精品最新,日韩成人无码中文字幕,久久久久人妻精品一区二区三区 ,久久偷看各类wc女厕嘘嘘偷窃,巨乳人妻久久+av中文字幕

        《Neural Collaborative Filtering (深度協(xié)同過(guò)濾)》

        來(lái)源: 信息工程學(xué)院 作者:龔宇平 添加日期:2017-05-18 10:27:42 閱讀次數(shù):

               講座題目:Neural Collaborative Filtering (深度協(xié)同過(guò)濾)
          Speaker:  Xiangnan He (何向南)(新加坡國(guó)立大學(xué),多媒體搜索實(shí)驗(yàn)室,博士后)
          Abstract:
          In recent years, deep neural networks have yielded immense success on speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks on recommender systems has received relatively less scrutiny. In this work, we strive to develop techniques based on neural networks to tackle the key problem in recommendation -- collaborative filtering -- on the basis of implicit feedback.
          Although some recent work has employed deep learning for recommendation, they primarily used it to model auxiliary information, such as textual descriptions of items and acoustic features of musics. When it comes to model the key factor in collaborative filtering -- the interaction between user and item features, they still resorted to matrix factorization and applied an inner product on the latent features of users and items.
          By replacing the inner product with a neural architecture that can learn an arbitrary function from data, we present a general framework named NCF, short for Neural network-based Collaborative Filtering. NCF is generic and can express and generalize matrix factorization under its framework. To supercharge NCF modelling with non-linearities, we propose to leverage a multi-layer perceptron to learn the user-item interaction function. Extensive experiments on two real-world datasets show significant improvements of our proposed NCF framework over the state-of-the-art methods. Empirical evidence shows that using deeper layers of neural networks offers better recommendation performance.
          時(shí)間:5月18日 下午14:00
          地點(diǎn):賽博南樓405室
          歡迎廣大師生參加!

         

        分享至:
        主站蜘蛛池模板: 日中文字幕在线| 人妻系列无码专区免费视频| 99热国产在线观看| 本道无码一区二区久久激情| 亚洲欧洲日产国码无码app| 亚洲另类激情综合偷自拍图| 无码av孕妇专区| 日本丰满少妇xxxx| 免费无码专区毛片高潮喷水| 九九在线精品国产| 中文国产成人精品久久水| 国产综合第一夜| 强奷乱码中文字幕熟女导航| 国产精品毛片无遮挡高清| 亚洲精品午夜国产VA久久成人| 人妻少妇精品视频专区| 欧美熟妇乱子伦xx视频| 黑人巨大AV在线播放无码| 久久亚洲2019中文字幕| 天躁夜夜躁狼狠躁| 久久久精品电影| porenxxxx老师| 国产成人一区二区免av| 高级黄区18勿进视频免费| 亚洲欧美日韩综合ab| 欧美巨大极度另类| 91黄色在线观看| 色人妻超碰| 国产短视频精品一区二区| 国产午夜福利精品久久| 亚洲精品乱码久久久久久蜜桃欧美| 国产亚洲综合欧美视频| 亚洲第一在线综合网站| 亚洲电影中文字幕| 国产精品美女AV免费观看| 色综合另类小说图片区| 欧美精品一区二区在线观看播放| 国产成人区在线观看视频| 五月天综合社区| 国产成人精品视频一区二区三| 91视频爱爱|